Licong Lin

Education

University of California at Berkeley

PhD student in Statistics

- Advised by Song Mei and Peter Bartlett.
- Worked as a GSI (teaching assistant) for STAT 153, STAT 210B, STAT 135; as a GSR (research assistant).
- Graduate Courses: STAT 205B (A), STAT 210A (A+), STAT 210B (A+), STAT 215A (A+), STAT 241 (Reinforcement learning, A+), STAT 256 (Causal inference, A+), EE 227C (Convex optimization, A).

Peking University

B.S. in Statistics

• Overall GPA: 3.82/4 (rank: 2/45)

Research Interests

Deep learning theory, LLM alignment, high-dimensional statistics, statistical inference

Publication and preprints.

Transformers as Decision Makers: Provable In-Context Reinforcement Learning via Supervised Pretraining Licong Lin, Yu Bai, Song Mei

International Conference on Learning Representations (ICLR) (2024). 2024

- Statistical Limits of Adaptive Linear Models: Low-Dimensional Estimation and Inference Licong Lin, Mufang Ying, Suvrojit Ghosh, Koulik Khamaru, Cun-Hui Zhang Advances in Neural Information Processing Systems 36 (2024). 2024
- Mean-field variational inference with the TAP free energy: Geometric and statistical properties in linear models Michael Celentano, Zhou Fan, Licong Lin, Song Mei *arXiv preprint arXiv:2311.08442* (2023). 2023

Semi-parametric inference based on adaptively collected data Licong Lin, Koulik Khamaru, Martin J Wainwright arXiv preprint arXiv:2303.02534 (2023). 2023

Plug-in Performative Optimization

Licong Lin, Tijana Zrnic arXiv preprint arXiv:2305.18728 (2023). 2023

Near-optimal multiple testing in Bayesian linear models with finite-sample FDR control

Taejoo Ahn, Licong Lin, Song Mei arXiv preprint arXiv:2211.02778 (2022). 2022

What causes the test error? going beyond bias-variance via anova

Licong Lin, Edgar Dobriban The Journal of Machine Learning Research 22.1 (2021) pp. 6925–7006. JMLRORG, 2021

Selected Research Projects

Transformers as Decision Makers: Provable In-Context Reinforcement Learning

Advised by Prof. Song Mei (UCB)

- Proposed a theoretical framework for in-context reinforcement learning via supervised pretraining using transformers.
- Theoretically showed that transformers have the ability to in-context approximate near-optimal RL algorithms, e.g., LinUCB, Thompson sampling for stochastic linear bandits, and UCB-VI for tabular MDPs.
- Performed preliminary experiments on in-context RL using GPT-2 to verify our theoretical findings.
- The paper is accepted as a poster to ICLR 2024.

Inference of one coordinate in GLM given adaptively collected data via online debiasing.

Joint work with Koulik Khamaru (former Statistics PhD at UCB)

- Follow-up work of the paper on semi-parametric inference (see below). Aim to provide $O(1/\sqrt{n})$ -consistent asymptotically normal estimator of a single coordinate of the unknown parameter vector, when the data points are sequentially collected.
- Start with constructing an estimator of a single coordinate that is $O(1/\sqrt{n})$ -consistent; then perform the online-debiasing trick to modify the estimator so that it is asymptotically normal. The paper is accepted as a poster to Neurips 2023.

Berkeley, CA Aug 2021 - Current

Beijing, China

Sep 2017 - July 2021

Berkeley, CA Dec 2022 - August 2023

1

Darkalaw CA

Berkeley, CA

May 2023 - Oct 2023

Semi-parametric inference with adaptively collected data

Advised by Prof. Martin Wainwright (UCB & MIT)

- Statistical inference of the target parameter in a generalized linear model at the presence of potentially high-dimensional nuisance parameter.
- Assumed the data points are sequentially collected instead of i.i.d. Obtained asymptotic normal estimators via solving a weighted estimating equation.
- Our proposed algorithm works for offline data collected from bandit algorithms or sequential experiments.

Deep learning theory on overparametrization

Advised by Prof. Edgar Dobriban (UPenn)

- · Aimed to understand the non-monotonicity (e.g. double descent phenomenon) of the test error as a function of model complexity or number of training samples using asymptotic random matrices theory.
- Published in Journal of Machine Learning Research, 2021.

Design a new MCMC algorithm

Advised by Prof. Cheng Zhang (PKU)

- Combined neural networks with HMC algorithm to design a sampling algorithm suitable for high-dimensional problems.
- Introduced the normalizing flow model into the design of the kinetic energy function of HMC. With the strong representability of the neural networks, our algorithm finds a kinetic energy function that significantly improves the sampling performance of HMC.

Ongoing Projects

Jackknife debiasing of high-dimensional Z-estimators

Joint work with Fangzhou Su, advised by Peng Ding, Martin Wainwright (UCB & MIT)

- Analyze the performance of jackknife debiased Z-estimators of one-dimensional functionals. Prove asymptotic normality under the high dimensional regime $p^{3/2} \ll n$, where p is the problem dimension and n is the number of samples.
- The proposed method is an automatic debiasing procedure. It has wide applications in econometrics, causal inference, generalized linear model, etc.
- Apply concentration results of random matrices and U-statistics in the analysis. Derive non-asymptotic bounds for the estimation error of Zestimators.

Theoretical understanding of scaling law in LLMs

Joint work with Jingfeng Wu, advised by Peter Bartlett, Jason Lee (UCB & Princeton)

- Aim to provide a theoretical interpretation of the scaling laws of LLMs.
- Analyze the simple linear model with SGD training. We have theoretically established that the risk of the model satisfies a power law formula, which is consistent with the empirical observations in LLMs.

LLM unlearning

Joint work with Ruiqi Zhang, advised by Song Mei (UCB)

- Aim to design a new algorithm for LLM unlearning; develop a statistical framework for LLM unlearning.
- This is an empirical project on LLM finetuning. We finetune Llama 2 and evaluate algorithms' performance under various metrics.

Honors & Awards

	Huaixin Bachelor, Peking University Honor graduate of Applied Mathematics and Statistics Program, Peking University O Academic Excellence Award, Peking University	China China China
2019,20	Peking University Scholarship, Peking University	China
2020	Gold Medal in Probability & Statistics, ST. Yau College Student Mathematics Contest, placed 1st nationally	China
2018	1st Prize, Beijing College Student Mathematics Competition	China
2016	2nd Prize, China National Mathematical Olympiad	China

Skills

Programming and software Python (proficient), R (proficient), Matlab, Git, ETFX.

Berkeley, CA Dec 2021 - Feb 2023

Philadelphia, PA

May 2020 - Mar 2021

Beijing, China Dec 2019 - Dec 2020

Berkeley, CA Dec 2022 - Current

Berkelev, CA

Jan 2024 - Current

Berkeley, CA

Jan 2024 - Current